R.10.12.007 Storage OIR Energy Storage Cost-Effectiveness March 25, 2013 Aloke Gupta & Arthur O'Donnell Energy Division, CPUC ## **Agenda** Opening Remarks 9:30 EPRI (I) 10:00 **Lunch** Noon EPRI (2) 1:00 DNV KEMA 2:00 Closing Remarks 4:00 Adjourn 4:30 ### **Summary of AB 2514** - Directed CPUC to open a proceeding to: - Adopt procurement targets, if appropriate, for each LSE to procure viable & cost-effective energy storage - To be achieved by EOY 2015 & EOY 2020 - Consider policies to encourage deployment of energy storage - Deadline for CPUC decision by October 1, 2013 - CPUC to re-evaluate its determinations every three years ## **Energy Storage OIR R10-12-007** Procurement target (AB2514) ## **Breaking Down Energy Storage on the Grid** | Bulk Generation | | Transmission | Distribution | Behind-the-
Meter | |--|---|------------------------------|--|--| | Renewable –
Sited
Storage | Transmission
Connected
Bulk Storage | Transmission Grid
Storage | Distribution Grid
Storage | Customer-Sited
Storage | | CSPWind +Storage | A/SPeakerLoad
following | FERC Jurisdiction | Substation Level Storage Distributed Peaker Community ES | Bill mgt / PLSPower qualityEV charging | ## **Breaking Down Energy Storage on the Grid** | Bulk Generation | | Transmission | Distribution | Behind-the-
Meter | |--|-------------------------------------|------------------------------|--|--| | Renewable –
Sited
Storage | Transmission Connected Bulk Storage | Transmission Grid
Storage | Distribution Grid
Storage | Customer-Sited
Storage | | CSPWind +Storage | A/S
Peaker
Load
following | FER© Jurisdiction | Substation LevelStorageDistributedPeakerCommunity E9 | Bill mgt / PLS Power quality EV charging | # Storage "End Use" Framework | Category | Storage "End Use" | | | |-------------------------------|---|--|--| | ISO/Market | Frequency regulation Spin/non-spin/replacement reserves Ramp Black start Real time energy balancing Energy price arbitrage Resource adequacy | | | | VER
Generation | Intermittent resource integration: wind (ramp/voltage support) Intermittent resource integration: photovoltaic (time shift, voltage sag, rapid demand support) Supply firming | | | | Transmission/
Distribution | Peak shaving: off-to-on peak energy shifting (operational) Transmission peak capacity support (upgrade deferral) Transmission operation (short duration performance, inertia, system reliability) Transmission congestion relief Distribution peak capacity support (upgrade deferral) Distribution operation (Voltage Support/VAR Support) Outage mitigation: micro-grid | | | | Customer 7 | Time-of-use /demand charge bill management (load shift) Power quality Peak shaving (demand response), Back-up power | | | ### **Storage Cost-Effectiveness Study** - Study effort launched in early Jan 2013 - Objective: To generate meaningful cost effectiveness insight quickly to inform consideration of various policy options for advancing deployment of energy storage systems - Two independent parallel efforts - EPRI - DNV KEMA - Staff developed work plan to drive study - Stakeholder review on 2/12/13 - Assumptions based on stakeholder input - Technology cost/performance, market conditions, financial parameters ## **Points to Keep in Mind** - Does not establish a CPUC-endorsed storage CE "methodology" - Limited in time and resources - Not intended to be exhaustive, comprehensive, or precise - Technology omission does not mean exclusion from consideration - Large uncertainty in future market conditions - Large error band in CE analysis - Look at big picture, defer second/third order considerations - An initial effort; more validation may be needed ### **Next Steps in Storage Proceeding** April – June Continue Cost-Effectiveness Analysis May - June Revise Use Case documents June Submission of record August - September ALJ Proposed Decision September Comments and Reply Comments October 2013 Commission Decision #### **Thank You!** For further information related to Energy Storage Rulemaking R.10-12-007, please contact: > Aloke Gupta ag2@cpuc.ca.gov 415-703-5239 > Arthur O'Donnell ao1@cpuc.ca.gov 415-703-1184